TEORIAS E FILOSOFIAS DE GRACELI 123
- Gerar link
- X
- Outros aplicativos
frequências ópticas das raias espectrais no sistema decadimensional e categorial Graceli
sábado, 12 de janeiro de 2019
variabilidade e indeterminaldade de espectros conforme o sistema decadimensional e categorial Graceli.
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
É interessante notar que, ainda no primeiro artigo de sua trilogia, além das demonstrações indicadas acima, Bohr também demonstrou que, se o momento angular (M) de um elétron em movimento circular (de raio a) em torno do núcleo de um átomo, tivesse o valor dado por
, com
, a energia desse elétron seria estacionária, isto é, o elétron estaria em um estado quântico de energia bem definido. Aliás, registre-se que a “quantização do momento angular” já havia sido sugerida pelo físico inglês John William Nicholson (1881-1955), em 1912 (Monthly Notices of the Royal Astronomical Society 72, pgs. 49; 139; 677; 693; 729), em seus trabalhos nos quais desenvolveu seu modelo atômico “tipo saturniano”, isto é: um caroço central carregado positivamente rodeado de anéis eletrônicos.
Uma das primeiras confirmações experimentais do modelo atômico de Bohr foi conseguida por intermédio da experiência realizada pelos físicos alemães James Franck (1882-1964; PNF, 1925) e Gustav Ludwig Hertz (1887-1975; PNF, 1925) [sobrinho do famoso físico alemão Heinrich Rudolf Hertz (1857-1894), que havia obtido, em 1887, as hoje famosas “ondas Hertzianas” – microondas]. Vejamos como isso aconteceu. Desde 1911, esses físicos realizavam experiências sobre descargas elétricas nos gases, procurando uma relação entre a Teoria Quântica de Planck e o potencial de ionização dos gases utilizados. Esse potencial representava a diferença de potencial (V) que devia ser aplicada aos raios catódicos (elétrons) com o objetivo de ionizar, por colisão, os átomos dos gases considerados. Até 1913, eles haviam conseguido medir os potenciais de ionização de diversos gases [hidrogênio (H), hélio (He), neon (Ne), oxigênio (O) etc.], usando aquela técnica. No entanto, em 1914 (Verhandlungen der Deustschen Physikalische Gesellschaft 16, pgs. 457; 512), eles encontraram um resultado surpreendente, comunicado por Hertz na reunião daSociedade Alemã de Física realizada no dia 24 de abril de 1914. Tal resultado deveu-se ao seguinte.
A experiência que Franck e Hertz realizaram relacionava-se com o estudo da colisão de elétrons com vapor de mercúrio (Hg) à pressão de cerca de 1 mm de Hg. Por intermédio de um amperímetro, eles mediram a corrente elétrica do anodo [folha cilíndrica de platina (Pt)] em função do potencial acelerador aplicado ao catodo (fio de platina incandescente). Com isso, eles estudaram a velocidade (v) dos elétrons (de massa m e carga e) antes e depois da colisão com os átomos de Hg, por intermédio da expressão:
. Observaram, então, que a corrente elétrica aumentava com o potencial (V) até quando este atingia o valor aproximado de 4,9 V (Volts), caindo a corrente rapidamente após aquele valor do potencial. No entanto, à medida que o potencial crescia novamente, a corrente voltava também a crescer até quando o potencial atingisse o valor aproximado do dobro do valor anterior (9,8 V), quando de novo a corrente caía de maneira brusca. Esse comportamento corrente versus potencial repetia-se sempre que o potencial fosse um múltiplo em torno de 4,9 V, indicando que o elétron poderia sofrer mais de uma colisão inelástica com o vapor de Hg. Esses valores críticos do potencial eram acompanhados pela emissão de luz de comprimento de onda de 2.536 Ǻ. Franck e Hertz encontraram um comportamento similar, embora menos pronunciado, quando substituíram o vapor de Hg por He, sendo o potencial crítico deste em torno de 21 V.
Para interpretar tais resultados, Franck e Hertz utilizaram as idéias apresentadas pelo físico alemão Johannes Stark (1874-1957; PNF, 1919) sobre a origem das séries espectrais. Em 1908 (Physikalische Zeitschrift 9, p. 85), Stark propôs um modelo segundo o qual as séries espectrais se relacionavam com o processo de ionização de átomos e moléculas, e que sua freqüência (
) era ligada ao potencial de ionização (V) através da expressão:
. Portanto, para Franck e Hertz, logo que a energia cinética do elétron (
) atingia a energia potencial crítica (eV), uma parte dela era usada na ionização e a outra era emitida como luz de freqüência
. Com esse procedimento, eles chegaram a obter o valor de
, em bom acordo com os valores experimentais até então conhecidos.
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Um típico espectro de fotoelétrons (XPS) encerrando descrição das principais estruturas nele encontradas.
No âmbito científico um espectro é uma representação das amplitudes ou intensidades - o que geralmente traduz-se por energia - dos componentes ondulatórios de um sistema quando discriminadas uma das outras em função de suas respectivas frequências (ou comprimentos de onda). Em um espectro as componentes ondulatórias (fases) distinguem-se fisicamente umas das outras não por suas naturezas mas sim pelas suas frequências, portanto. O exemplo típico é o espectro visível.
Caso o diagrama expresse a frequência associada a cada componente ondulatória do sistema como função do respectivo comprimento de onda e não a intensidade como função da frequência tem-se o que se denomina em física por relação de dispersão. Relações de dispersão e espectros, apesar de distintos, encontram-se relacionados, visto que, entre outras observações, as intensidades em um espectro podem ser descritas, via relação de dispersão, tanto em função das frequências como em função dos respectivos comprimentos de onda a elas associados.
O conceito de espectro também aplica-se à dinâmica de um feixe material em virtude da dualidade partícula-onda. Associado à partícula material em movimento há uma onda de matéria cuja frequência mostra-se diretamente proporcional à sua energia cinética. Relações estabelecidas em função das energias cinéticas são em essência relações estabelecidas em função das frequências das ondas de matéria associadas; e assim também constituem exemplos de espectros. Como exemplo têm-se os espectros "XPS", obtidos via processo de espectroscopia de fotoelétrons excitados por raios X.
Um equipamento capaz de analisar e gerar o espectro de um sinal temporalmente complexo contudo "bem comportado" [1] é denominado espectrômetro. Se acrescido de funcionalidade que lhe permita gerar um registro fotográfico do espectro exibido, o equipamento denomina-se espectrógrafo [2]. Em termos teóricos, a ferramenta matemática que extrai de um sinal no domínio do tempo cada uma das componentes espectrais que, juntas, o caracterizam no domínio da frequência, é a transformada de Fourier. O sinal também pode ser integralmente reescrito no domínio tempo via suas componentes no domínio da frequência através da série de Fourier.
Espectro de massa[editar | editar código-fonte]
Um exemplo típico de um espectrômetro é um espectrômetro de massa. Valendo-se entre outros da propriedade elétricasassociadas às partículas e aos núcleos atômicos, uma dada mistura de isótopos de um elemento químico ou mesmo elementos químicos distintos é inicialmente vaporizada, ionizada, colimada em um feixe de partículas feito mover-se à uma velocidade pré-estabelecida, e então dirigida para uma região onde campos magnéticos fazem-nas descrever trajetórias semicirculares com raios que dependem explicitamente de seus momentos e, por conseguinte, explicitamente de suas massas ou energias cinéticas. Sensores ao final possibilitam a construção de um gráfico discriminando a percentagem estequiométrica em massa de cada componente na mistura inicial em função da massa - ou por vezes, devido a detalhes técnicos, em função da razão carga / massa - do respectivo componente.
A denominação "espectro" se justifica aqui em função da dualidade partícula-onda. De Broglie trouxe à luz o fato de que partículas massivas têm comportamento ondulatório, onde seus comprimento de onda encontram-se relacionados aos seus momentos, ao passo que, sob a mesma ótica, Max Planck mostrou que as energias das partículas quânticas em movimento encontram-se relacionadas às frequências das ondas de matéria à estas associadas. Separar as partículas por massa traduz-se de forma prática em tal sistema em discriminá-las através de suas energias cinéticas, ou, via dualidade partícula-onda, decompor a massa total da amostra em função das frequências associadas a seus respectivos elementos constituintes quando em movimento. Via relação de dispersão, o mesmo raciocínio pode ser feito com base nos momentos, ou seja, com base nos associados comprimentos de onda.
Espectro eletromagnético e óptico[editar | editar código-fonte]
O exemplo mais expressivo de um espectro é o padrão obtido quando as radiações electromagnéticas são primeiro espacialmente discriminadas em função de suas frequências - mediante algum fenômeno físico explicitamente dependente da última grandeza, a exemplo o que ocorre quando as ondas transitam de um meio de propagação para outro onde a relação de dispersão mostre-se distinta da primeira (refração) - e são então devidamente projetadas sobre filme adequadamente sensível às intensidades destas. Se a radiação eletromagnética encontra-se na faixa do visível, as diversas frequências eletromagnéticas traduzem-se em "cores" visualmente observáveis, e para o caso onde todas as componentes na faixa de frequências em questão estejam significativamente presentes, tem-se a impressão de um arco-iris.
A exemplo, as radiações solares resultam em um espectro de bandas coloridas quando a luz branca passa através de um prisma ou rede de difração. As cores deste espectro, ordenadas por comprimentos de onda decrescentes (ou frequências crescentes), são: vermelho, laranja, amarelo, verde, azul, anil e violeta. A busca por maiores detalhes quanto à radiação solar leva ao Espectro de Fraunhofer.
Os espectros formados a partir de radiações emitidas por corpos incandescentes ou convenientemente excitados são designados por espectros de emissão.
Quando a luz branca passa através de um meio semitransparente, dá-se uma absorção selectiva de radiações de certos comprimentos de onda; o espectro da radiação transmitida designa-se então por espectro de absorção.
Os espectros de emissão e de absorção de uma substância são característicos dessa substância, sendo muitas vezes usados para a sua identificação. Tais espectros são o resultado de transições entre diferentes autoestados dos átomos ou moléculas da substância, sendo emitidas ou absorvidas, dinamicamente, ondas electromagnéticas.
A frequência f das radiações emitidas ou absorvidas é dada por
, onde E1 e E2 são as energias, respectivamente, dos estados inicial e final entre os quais deu-se a transição, usualmente eletrônica, e h é a constante de Planck. Quando E1 é maior que E2, ondas electromagnéticas (fótons) são emitidas; no caso contrário, fótons são absorvidos.
Espectro contínuo é aquele em que figuram com intensidades não nulas todos os comprimentos de onda presentes na faixa em estudo. As radiações emitida por um corpo negro, a exemplo as emitidas por lâmpadas incandescentes, se decompõem em espectros desta natureza.
Espectro de riscas, também chamados espectros de raias, são, ao contrário, aqueles em que aparecem apenas certos comprimentos de ondas específicos, não havendo energia associada aos demais comprimentos de onda. Espectros oriundos de lâmpadas fluorescentes são desta natureza.
Espectros Atômicos[editar | editar código-fonte]

Autovalores de energia e transições esperadas para o átomo de hidrogênio. A Série de Balmer é responsável pela parte do espectro do hidrogênio visível aos olhos humanos, e pela corcaracterística das lâmpadas de plasmaque encerram esse elemento.
Espectros atômicos são espectros de raias. Um dos espectros atômicos mais estudados, entre outros dada a sua importância em áreas como mecânica quântica, física de plasmas, astrofísica, astronomia e cosmologia, é o espectro do hidrogênio, tanto atômico quanto molecular. Quando a estrutura fina é ignorada, os comprimentos de onda para os quais verificam-se amplitudes não nulas ou negligenciáveis (radiação espúria) no espectro do hidrogênio atômico são determináveis por uma relação matemática empírica conhecida como fórmula de Rydberg:
Onde
A análise do átomo de hidrogênio é de suma importância para a compreensão da estrutura da matéria por ser esse o único átomo para o qual se estabelece uma descrição matemática analítica precisa; sendo por esse motivo o modelo escolhido para se introduzir o tratamento quântico da matéria na maioria dos (para não dizer em todos os) livros didáticos acerca do assunto. A solução da Equação de Schrödinger sujeita ao potencial de interação couloumbiano adequado ao átomo fornece por solução autoestados de energia descritos por autofunções e autovalores dos quais se derivam conclusões lógicas em plenitude condizentes com a estrutura espectral e demais dados empiricamente obtidos para o elemento (os autovalores de energia mais importantes, e transições esperadas, são mostrados na figura ao lado).
As autofunções do átomo de hidrogênio estabelecem uma base mediante a qual todos os demais átomos da tabela são, por aproximação, matematicamente descritos; sendo as correspondentes soluções para cada átomo obtidas por ténicas de solução numéricas e não por soluções analíticas, a exemplo via método desenvolvidos por Douglas Hartree(Teoria de Hartree). A partir dos resultados de tal teoria consegue-se então determinar matematicamente as características dos espectros esperados para os demais átomos da tabela periódica.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Modelo Atômico no sistema decadimensional e categorial Graceli.
quinta-feira, 10 de janeiro de 2019
o modelo atômico de Graceli em seu sistema decadimensional e categorial se fundamenta na entropia reversível
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
e nas categorias :
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
ou seja, um átomo dinâmico e entrópico, transcendente e indeterminado e variável conforme entropias, dez dimensões de Graceli, e as suas categorias.
ou seja, seria mais três categorias de números quântico.
Princípio de Exclusão de Pauli no sistema categorial Graceli.

![$\displaystyle \psi_A(\mathbf{q}_1,\mathbf{q}_2)=
\frac{1}{\sqrt{2}}\left[\psi_{...
...athbf{q}_2)-\psi_{\alpha_2}(\mathbf{q}_1)\psi_{\alpha_1}(\mathbf{q}_2)\right].
$](https://blogger.googleusercontent.com/img/proxy/AVvXsEjdmT8V2d4IJJLAjrc-MN9MwQxASQVrFaMLP-0IQ2kC87qDZIQu-g4gTG0q9Kv3EAl5Y5pA5DCZ5vPdCg2zGgpbnA9Za16g5Tqu42lMVeQ101covyh8vr4j1EE3P-DjoE9ofVRDQjpXnwm5w0jAB2Jlbl4UqyU=s0-d)
![$\displaystyle \psi(\mathbf{q}_1,\mathbf{q}_2)=\frac{1}{\sqrt{2}}\left[\psi_\upa...
...mathbf{r}_2)
-\psi_\downarrow(\mathbf{r}_1)\psi_\uparrow(\mathbf{r}_2)\right].
$](https://blogger.googleusercontent.com/img/proxy/AVvXsEiK1b0PeMxMHxbVmCBPL0retU2gUOHuNfExqtc4UrMTxI6K7cz6x_w4Ci5IuYv2WSXN_WrKT-n-VGpM8lSlFeMExWvFfHwf8Uyx4UtFi-olmKRf-s58kQ-jpyF3RS0npCfPj75KqcwFyOYSapC6j0ecdux_XT4=s0-d)
Se as funções de 1 partícula são as mesmas,
, uma tal função é automaticamente simétrica pela troca das coordenadas das duas partículas. Ela pode, portanto, representar um estado físico de um sistema de 2 bósons.
O fator
serve para tornar a função normalizada se as funções de 1 partícula são normalizadas. Tal função pode descrever um estado de dois bósons idênticos.
Note que se tomarmos
, ou seja atribuirmos a ambas as partículas o mesmo estado
, a função
se anula identicamente! Ou seja, não existem estados de dois férmions que correspondam a duas partículas no mesmo estado de 1 partícula. Para mais de dois férmions a condição de anti-simetria pela troca das coordenadas de qualquer par de partículas conduz ao mesmo resultado. Ou seja, as funções de estado de vários férmions idênticos só podem conter produtos de estados distintos de 1 partícula. Ou seja, em estados de férmions só pode haver uma e apenas uma partícula em cada estado de 1 partícula. Este é o Princípio de Exclusão de Pauli.![$\displaystyle \psi(\mathbf{q}_1,\mathbf{q}_2)=\frac{1}{\sqrt{2}}\left[\psi_\upa...
...mathbf{r}_2)
-\psi_\downarrow(\mathbf{r}_1)\psi_\uparrow(\mathbf{r}_2)\right].
$](https://blogger.googleusercontent.com/img/proxy/AVvXsEiK1b0PeMxMHxbVmCBPL0retU2gUOHuNfExqtc4UrMTxI6K7cz6x_w4Ci5IuYv2WSXN_WrKT-n-VGpM8lSlFeMExWvFfHwf8Uyx4UtFi-olmKRf-s58kQ-jpyF3RS0npCfPj75KqcwFyOYSapC6j0ecdux_XT4=s0-d)
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
O princípio de exclusão de Pauli
Como vimos anteriormente a Eq. de Schrödinger para duas partículas não interagentes apresenta soluções na forma de produtos de auto-funções de 1 partícula.Se as funções de 1 partícula são diferentes,
, uma tal função não obedece ao requisito de simetria de troca ditado pelo princípio de indistinguibilidade. Entretanto, a auto-função com as coordenadas trocadas,
, também é uma solução da Eq. de Schrödinger, com o mesmo auto-valor da energia. Assim, qualquer combinação linear das duas funções continua sendo uma solução da Eq. de Schrödinger, com a mesma auto-energia. Podemos então, a partir de tais funções obter soluções da Eq. de Schrödinger que também satisfaçam os requisitos da indistinguibilidade.
Um estado simétrico pode ser obtido como
Para férmions os estados devem ser necessariamente anti-simétricos pela troca. Um estado anti-simétrico pode ser obtido a partir de estados de uma partícula como
Observe que trocar as coordenadas de duas partículas envolve trocar todas as coordenadas, as coordenadas espaciais
e a coordenada de spin. Provavelmente, a versão do princípio de exclusão que vocês têm em mente diz: só pode haver 2 elétrons em cada estado orbital. Isto é completamente equivalente ao enunciado anterior se lembrarmos que o estado de um elétron é caracterizado pela sua função de onda (estado orbital) e pelo seu estado de spin. Assim, se temos um único estado orbital
, quando consideramos o spin podemos ter dois estados de elétrons,
e
. O função de estado dos dois elétrons é a combinação anti-simétrica das funções dos dois estados envolvendo a mesma função orbital:
relation between the principles of exclusion and uncertainty of Graceli, and paradox of Graceli's chameleon. according to its decadimensional and categorial system.
that is, within the system of infinite, infinite, mutable and indeterminate transcendental chains, there is uncertainty and exclusion, as well as the paradox of Graceli's chameleon. [that is, it transforms according to the means of categories and decadimensional ones involving structures, energies, and phenomena.
relação entre os princípio da exclusão e incerteza de Graceli, e paradoxo do camaleão de Graceli. conforme o seu sistema decadimensional e categorial.
ou seja, dentro do sistema de cadeias transcendentes ínfimas, infinitas, mutáveis e indeterminadas, se tem a incerteza e a exclusão, como também o paradoxo do camaleão de Graceli. [ou seja, se transforma conforme o meio de categorias e decadimensionais envolvendo estruturas, energias, e fenômenos.
that is, within the system of infinite, infinite, mutable and indeterminate transcendental chains, there is uncertainty and exclusion, as well as the paradox of Graceli's chameleon. [that is, it transforms according to the means of categories and decadimensional ones involving structures, energies, and phenomena.
relação entre os princípio da exclusão e incerteza de Graceli, e paradoxo do camaleão de Graceli. conforme o seu sistema decadimensional e categorial.
ou seja, dentro do sistema de cadeias transcendentes ínfimas, infinitas, mutáveis e indeterminadas, se tem a incerteza e a exclusão, como também o paradoxo do camaleão de Graceli. [ou seja, se transforma conforme o meio de categorias e decadimensionais envolvendo estruturas, energias, e fenômenos.
indeterminality of the principle of the exclusion of Graceli in the decadimensional and categorical Graceli system.
is a principle of quantum mechanics formulated by Ancelmo Luiz Graceli. which states that a single identical fermion can not occupy the same quantum state simultaneously. because every particle is formed of infinite others, and with energies and phenomena and transcendent and indeterminate chains, producing more structures, more energies and phenomena, and according to the decadimensional and categorical Graceli system.
where we have the uncertainty of the symmetry and anti-symmetry of quantum states according to the categories and ten dimensions of Graceli.
uncertainty of Graceli in the decadimensional and categorical Graceli system.
are not able to know and maintain a physical or physical constant at the same time, for all energy, structures, phenomena are in interactions in chains and infinite and minute matter.
is a principle of quantum mechanics formulated by Ancelmo Luiz Graceli. which states that a single identical fermion can not occupy the same quantum state simultaneously. because every particle is formed of infinite others, and with energies and phenomena and transcendent and indeterminate chains, producing more structures, more energies and phenomena, and according to the decadimensional and categorical Graceli system.
where we have the uncertainty of the symmetry and anti-symmetry of quantum states according to the categories and ten dimensions of Graceli.
uncertainty of Graceli in the decadimensional and categorical Graceli system.
are not able to know and maintain a physical or physical constant at the same time, for all energy, structures, phenomena are in interactions in chains and infinite and minute matter.
indeterminalidade do princípio da exclusão de Graceli no sistema decadimensional e categorial Graceli.
é um princípio da mecânica quântica formulado por Ancelmo Luiz Graceli. que afirma que um só férmion idêntico não podem ocupar o mesmo estado quântico simultaneamente. pois, toda partícula é formada de infinitas outras, e com energias e fenômenos e cadeias transcendentes e indeterminadas, produzindo mais estruturuas, mais energias e fenômenos, e conforme o sistema decadimensional e categorial Graceli.
onde se tem a incerteza da simetricidade e anti-simetricidade de estados quântico conforme as categorias e as dez dimensões de Graceli.
é um princípio da mecânica quântica formulado por Ancelmo Luiz Graceli. que afirma que um só férmion idêntico não podem ocupar o mesmo estado quântico simultaneamente. pois, toda partícula é formada de infinitas outras, e com energias e fenômenos e cadeias transcendentes e indeterminadas, produzindo mais estruturuas, mais energias e fenômenos, e conforme o sistema decadimensional e categorial Graceli.
onde se tem a incerteza da simetricidade e anti-simetricidade de estados quântico conforme as categorias e as dez dimensões de Graceli.
O princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmionsidênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos
,
, e
são iguais nos dois elétrons, estes deverão necessariamente ter os números
diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
vejamos
Modelo Atômico de Schrödinger
Modelo Atômico de Schrödinger – Modelo Quântico
PUBLICIDADE
Em 1926, o cientista austríaco Erwin Schrödinger (1887-1961) descreveu uma equação para explicar o comportamento dual, partícula-onda da matéria, em seu nível atômico substituindo a trajetória de uma partícula por uma função de onda. São soluções matemáticas que descrevem a função de onda de um elétron, para cada função de onda existe uma energia associada.
Para o átomo de hidrogênio, Schrödinger formulou:
Hψ = Eψ
A equação de Schrödinger é usada para calcular a função de onda ψ e a energia E. Essa equação descreve a função de onda de um elétron e a probabilidade de encontrá-lo em uma determina região na eletrosfera do átomo.
A mecânica quântica foi desenvolvida a partir das contribuições de Louis De Broglie, Heisenberg, Dirac e Schrödinger, e com ela o modelo atômico atual, baseado em resoluções matemáticas para descrever a estrutura do átomo. O modelo quântico parte do princípio que o comportamento atômico da matéria deve ser compreendido em termos de probabilidades. De Broglie propôs que a matéria, em seu nível microscópio, apresenta uma propriedade de onda e outra de partícula. Heisenberg propôs que não seria possível, entendo a matéria como partícula-onda, prever com exatidão a localização de um elétron (Princípio da Incerteza de Heisenberg), portanto, em termos quânticos, diz-se que é a região de maior probabilidade de se encontrar um elétron, chamada de orbital.
Através do modelo quântico podemos prever a probabilidade de o elétron estar em um determinado orbital num dado instante e dele podemos entender:
– Somente são permitidas certas funções de onda. Devido ao movimento vibracional do elétron, uma quantidade de energia é permitida em certas funções de onda.– Cada função de onda corresponde a energia permitida para o elétron e está de acordo com o modelo de Bohr para o átomo de hidrogênio.– Cada função de onda representa um orbital, cada orbital é descrito pelos números quânticos,que nos informam a energia, a forma e o tamanho do átomo.
Orbital
Por definição, temos: orbital é a região do espaço que o elétron ocupa no maior intervalo de tempo. É a região de máxima probabilidade de se encontrar um elétron.
A equação de Schrödinger descreve quatro números quânticos:
Número quântico principal (n): Representa o nível principal de energia do elétron, é o mesmo descrito por Bohr em seu modelo atômico. Sendo nnúmeros inteiros, mas diferente de zero (n ≠ 0). Por exemplo: n = 1, 2, 3, 4, 5…
Conforme n aumenta, o orbital torna-se maior e o elétron passa mais tempo longe do núcleo.

Número quântico azimutal (l)
Representa a nuvem eletrônica, depende do valor de n e nos informa a forma espacial da subcamada do orbital. Pode apresentar valores inteiros de zero até n-1.
| Subnível | nº quântico (l) | Máximo de elétrons |
| s | 0 | 2 |
| p | 1 | 6 |
| d | 2 | 10 |
| f | 3 | 14 |
Forma dos Orbitais
O número quântico azimutal representa os subníveis de energia.
Para n = 1, l = 0 → o subnível s.
Para n = 2, l = 0, 1 → sendo l= 1, o subnível p.
Para n = 3, l = 0, 1, 2 → sendo l = 2, o subnível d.
Para n = 4, l = 0, 1, 2, 3 → sendo l = 3, o subnível f.
E assim por diante e em ordem alfabética.
O orbital s, l = 0

Todos os orbitais s são esféricos. O tamanho do orbital aumenta à medida que o elétron vai ocupando níveis mais energéticos de energia, ou seja, para o modelo quântico, à medida que aumenta a probabilidade do elétron estar mais afastado do núcleo.
O orbital p, l = 1
Formado por três orbitais p distribuídos em um plano cartesiano de orientação (x, y, z). Os orbitais têm a forma de alteres. Em átomos isolados, apresentam a mesma energia, a mesma forma, mas orientações espaciais diferentes. A medida que n aumenta os orbitais p ficam maiores.

Todos os orbitais p têm um nó no núcleo, isso significa que nessa região a probabilidade de encontrar um elétron é zero. O elétron poderá ser localizado, provavelmente, em ambos os lados do plano.
O orbital d, l = 2
Cada subnível d é formado por cinco orbitais. No estado isolado apresentam a mesma energia, mas diferem quanto o arranjo geométrico.

– Quatro dos cinco orbitais d possuem quatro lóbulos cada.
– Um orbital d tem dois lóbulos e um anel.
Quando l = 2, existem dois planos nodais (nós), que passam pelo núcleo.

O orbital f, l = 3
Orbitais f apresentam geometrias mais complexas, se aplicam bem a série dos lantanídeos e actinídeos e para explicar as propriedades dos últimos elementos do bloco d. Nosso intuito é apresenta-lo sem nos aprofundar nos conceitos descritos pela mecânica quântica quanto a formação desse orbital.

O lobo de cor mais escura é o positivo. O lobo mais claro corresponde ao negativo.
Número quântico magnético (ml)
Fornece informações da orientação dos orbitais no espaço. Depende do número quântico azimutal (l). Apresenta valores entre –l e +l, inclusive zero. Para:
l = 0 (s) → ml = 0 – temos um orbital;
l = 1 (p) → ml = -1, 0, 1 – temos três orbitais, três orientações no espaço.
l = 2 (d) → ml = -2, -1, 0, 1, 2 – temos cinco orbitais, cinco orientações no espaço.
l = 3 (f) → ml = -3, -2, -1, 0, 1, 2, 3 – temos sete orbitais, sete orientações diferentes no espaço.
A energia de um elétron é independente da direção do orbital, a não ser quando o átomo esta sobre o efeito de um campo magnético ou elétrico, fora isso, consideramos que elétrons com diferentes valores de mterão a mesma energia, quando apresentarem o mesmo n e o mesmo l.
Podemos representar os orbitais de uma forma simplificada, como “caixas”, onde os elétrons estarão distribuídos. Utilizamos esse recurso quando não há a necessidade de mostrar a forma geométrica do orbital. Assim, representamos:

Número quântico spin (ms)
Descreve a rotação do elétron entorno do seu eixo. Experimentos demostraram que as linhas espectrais do hidrogênio de outros átomos se desdobravam quando eram submetidos a um campo magnético. Dessa forma, o elétron apresentava um movimento de rotação própria entorno do seu eixo, essa variação na carga faz com que o elétron atue como um pequeno imã. O número quântico spin apresenta dois valores: +1/2 e -1/2.

O spin dos elétrons é representado por setas, como na figura acima. Alguns autores representam a seta ↑ como +1/2 e ↓ como -1/2, mas isso é por convenção, não é uma regra obrigatória. Assim, o primeiro elétron a ocupar um orbital pode ter spin -1/2 ou +1/2.
Para o hidrogênio, podemos representar:

Propriedades Paramagnéticas e Diamagnéticas
Quando aproximamos um imã ao sal de cozinha, tecidos e giz, por exemplo, não notamos uma atração, isso significa que os elétrons são repelidos, isso é uma propriedade diamagnética, todos os elétrons estão emparelhados nos orbitais que ocupam.
Quando aproximamos um imã perto de determinados metais, notamos uma atração significativa, ou seja, há uma atração eletromagnética entre os metais e o imã, isso é uma propriedade paramagnética, os elétrons se encontram desemparelhados nos orbitais que ocupam. Podemos exemplificar pela figura a seguir:

Propriedades magnéticas podem ser explicadas pelo modelo atômico quântico e de como os elétrons estão distribuídos nos orbitais atômicos.
Para entendermos melhor essa configuração do modelo quântico e como posicionar os elétrons, existem duas regras, conceitos na verdade, que são importantes saber, sendo:
O princípio da exclusão de Pauli: Apenas dois elétrons, no máximo, podem ocupar um orbital. Quando dois elétrons ocupam um orbital, seus spins devem ser emparelhados.
Regra de Hund: Os elétrons ocupam os níveis mais baixos de energia para um átomo em seu estado fundamental. Por essa regra devemos preencher todos os orbitais vazios primeiro e dependendo da quantidade de elétrons é que se vai preencher os demais orbitais. Os orbitais são preenchidos por ordem crescente de n.
efeitos fotoelétrico termo-magnético temporal no sistma decad. e cat. Graceli
quinta-feira, 20 de dezembro de 2018
efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]
Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.
De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.
Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequêncialimite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[5][6][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.
Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.
Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.
Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]
Equações[editar | editar código-fonte]
Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Algebricamente:
Onde:
- h é a constante de Planck,
- f é a frequência do foton incidente,
é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
é a energia cinética máxima dos elétrons expelidos,
- f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
- m é a massa de repouso do elétron expelido, e
- vm é a velocidade dos elétrons expelidos.
Notas:
- Se a energia do fóton (hf) não é maior que a função trabalho (
), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por
.
- Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
- Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.
Aplicações[editar | editar código-fonte]
- Controle Remoto
Os controles remotos, games e artifícios digitais estão cada vez mais presentes nessa era considerada digital, então é viável e interessante que o Efeito Fotoelétrico seja observado, para uma melhor a compreensão, através de um simulador. O controle remoto, por exemplo, pode ser associado à fonte de luz presente no simulador, pois emite um feixe de luz de determinada frequência que aciona o dispositivo fotossensível presente nos aparelhos controlados por ele.[7]
- Cinema
Graças ao efeito fotoelétrico, tornou-se possível o cinema falado, assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir uma maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujos funcionamentos se assentam no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que pode fazer qualquer operário, permitem acender e desligar automaticamente a iluminação de ruas, os faróis, etc. Tudo isto se tornou possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica[8]
- Visão Noturna
O equipamento de visão noturna economicamente mais acessível, mais leve, menor, mais ergonométrico, mais confiável, com campo de visão maior, com alto desempenho sob baixas condições de iluminação e que possa ser utilizado tanto de noite quanto de dia atualmente é feito com Tubos Intensificadores de Imagem (TII). Os intensificadores de luz baseiam-se no efeito fotoelétrico demonstrado por Albert Einstein em 1905, no qual um fóton ao incidir sobre determinados materiais é capaz de provocar a emissão de um elétron, denominado fotoelétron. Este efeito fotoelétrico ocorre justamente no fotocatodo. Portanto, a luz (fótons) que chega(m) ao fotocatodo é(são) convertida(os) em fotoelétrons. Estes fotoelétrons são acelerados pelo campo elétrico e para os TIl da 2ª geração em diante são multiplicados na placa de microcanais. Esta multiplicação de elétrons ocorre da seguinte forma: o campo elétrico existente entre o fotocatodo e a placa de microcanais direciona os elétrons para a placa, de modo que ao entrarem nos microcanais colidem com as paredes semicondutoras. Esta colisão gera elétrons secundários que caminham dentro dos microcanais sob influência de um intenso campo elétrico aplicado ao longo dos microcanais. Mais colisões geram mais elétrons e este efeito de avalanche produz o ganho (amplificação) do TIl. Quando alcançam o final da placa de microcanais, os elétrons são acelerados através de uma pequena separação até atingirem a tela de fósforo. Na tela de fósforo os elétrons multiplicados colidem com alta energia e são convertidos em fótons, gerando uma imagem. Após a tela de fósforo está a janela de fibras ópticas, que conduz a imagem gerada para a posição focal desejada pelo restante do sistema óptico, e, quando necessário, inverte a imagem.[9]
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
T [FDP] [dt]. =temperatura, ferromagnético, diamagnético, paramagnético, derivada de tempo.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
indeterminalidade do Modelo da gota líquida e energia de ligação no sistema decad. e categ. Graceli
quarta-feira, 19 de dezembro de 2018
indeterminalidade da energia de ligação e gota líquida no sistema decadimensional e categorial Graceli.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Na física nuclear o modelo da gota líquida é um modelo que permite determinar a massa dos núcleos atômicos. Ele se apoia em duas propriedades que quase todos núcleos apresentam: a energia de ligação é aproximadamente proporcional à massa e a densidade dos núcleos é aproximadamente a mesma.[1]
Í
Fórmula empíricaEsta é chamada de equação semi-empírica da energia de ligação. As constantes e a origem dos termos é como se segue:
- 1.
. A constante de densidade do núcleo implica que a distância entre núcleons e o número de vizinhos mais próximos (isto é, dentro de 3 fm) é também constante.[2]
Portanto a energia de ligação de cada núcleon também deverá ser constante. Por consequência, a energia de ligação total deverá ser proporcional ao número de núcleons. Este é chamado de efeito de volume.
- 2.
. O 1º termo é super consideração (superestimar) porque ignora o fato de que os núcleons próximos à superfície do núcleo têm poucos vizinhos comparado aos núcleons no interior.
Temos que subtrair o termo proporcional à área da superfície, 4π.R2.
Usando R=Ro.A1/3 , a área da superfície se torna 
a qual é proporcional à A2/3. Este é o chamado efeito de superfície.
- 3.
.
pares de prótons, cada um com um potencial de Coulomb de
, onde
Portanto, subtraímos o termo proporcional a
Este é o efeito de Coulomb.
- 4.
. Nós encontramos num modelo simples de
caixa unidimensional que a partida de N = Z aumenta a energia do núcleo e assim diminui a energia de ligação, portanto nós subtraímos o termo proporcional a (N=Z)²
Energia de ligação nuclear[editar | editar código-fonte]
Em um núcleo com um número Z de prótons e N de nêutrons a relação de sua massa nuclear não é a simples soma das massas de prótons e nêutrons.[3]
Utilizando a teoria da relatividade temos a noção de que a massa tenda a aumentar quando a energia aumenta, tendo assim uma relação direta proporcionalmente. Assim os núcleons dentro do núcleo terão uma massa menor no núcleo do que fora dele. A relação de diferenças de massas se dá por:
sendo que mp e mn são as massas do próton e nêutron e M(Z,A) representa a massa de um núcleo atômico Z e seu número de massa A. Assim temos a energia de ligação nuclear:
A energia em ocasião é a que se cede ao núcleo para que o mesmo se fragmente, assim cada núcleo ficará isolado dos demais.[3]
Energia de separação[editar | editar código-fonte]
A definição de energia de separação se dá àquela energia considerada mínima na separação do último núcleon (o menos ligado ao núcleo). Assim podemos supor que prótons são mais ligados ao núcleo devido à barreira de Coulomb,[3]
na energia de ligação temos,
Termo de emparelhamento[editar | editar código-fonte]
A energia de um ligação nuclear é afetada em um emparelhamento de núcleons de mesmo tipo, podendo diminuir, aumentar ou permanecer estável.
As regras de emparelhamento temos a seguir,
A energia de separação assim representamos , como:
Temos a tradução dos coeficientes nucleares como:
podemos então escrever a massa nuclear como,
Termo de simetria[editar | editar código-fonte]
Este termo garante que não haverá uma partícula (próton ou nêutron) preferencial e o núcleo tenderá a ter números próximos de uma e de outra.
A Teoria do Elétron no sistema decadimensional e categorial Graceli
domingo, 6 de janeiro de 2019
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Propriedades quânticas[editar | editar código-fonte]
Assim como todas as outras partículas, os elétrons podem se comportar como ondas. Esta propriedade é denominada dualidade onda-corpúsculo e pode ser demonstrada utilizando a experiência da dupla fenda.
A natureza ondulatória do elétron permite que ele passe através de duas fendas paralelas, ao invés de passar somente por uma, como seria esperado para uma partícula clássica. Na mecânica quântica, a propriedade ondulatória de uma partícula pode ser descrita matematicamente como uma função complexa, denominada função de onda, comumente representada pela letra grega psi (ψ).[82] [83]
Exemplo de uma função de onda antissimétrica para um estado quântico de dois férmions idênticos em uma caixa unidimensional. Se as partículas mudarem de posição, a função de onda inverte seu sinal.
Elétrons são partículas idênticas porque não podem ser distinguidas uma das outras devido a suas propriedades físicas intrínsecas. Na mecânica quântica, isto significa que um par de elétrons interagindo deve ser capaz de mudar de posições sem uma mudança observável para o estado do sistema. A função de onda de férmions, incluindo elétrons, é antisimétrica, o que significa que pode mudar de sinal quando dois elétrons são trocados; isto é ψ(r1, r2) = −ψ(r2, r1), onde as variáveis r1 e r2 correspondem ao primeiro e segundo elétrons, respectivamente. Uma vez que o valor absoluto não é alterado pelo sinal na troca, isto corresponde a probabilidades idênticas. Bósons, tais como o próton, tem funções de onda simétricas.[82][83]
No caso da antisimetria, soluções para a equação de onda para elétrons interagindo resulta em uma probabilidade zero de que cada par ocupe o mesmo local ou estado. Isto é responsável pelo princípio da exclusão de Pauli, que impede que dois elétrons de ocupar o mesmo estado quântico. Este princípio explica muitas das propriedades dos elétrons. Por exemplo, isto provoca que grupos de elétrons ligantes ocupem orbitais diferentes em um átomo, ao invés de se sobreporem num mesmo orbital.[82][83]
Partícula virtual[editar | editar código-fonte]
Ver também: Flutuação quântica de vácuo
Em uma visão simplificada, cada fóton passa algum tempo como uma combinação de um elétron virtual com sua antipartícula, o pósitron virtual, que rapidamente se aniquilam.[84] A combinação da variação de energia necessária para criar estas partículas, e o tempo durante o qual elas existem, caem em um limiar de detectabilidade expressado pelo princípio da incerteza de Heisenberg, ΔE · Δt ≥ ħ. Como efeito, a energia necessária para criar estas partículas virtuais, ΔE, pode ser "emprestada" do vácuo quântico por um período de tempo, Δt, então seu produto não é mais do que a constante de Planck reduzida, ħ ≈ 6.6×10−16 eV·s. Assim, para um elétron virtual, Δt é no máximo 1.3×10−21 s.[85]
Enquanto um par virtual elétron-pósitron existe, a força de Coulomb do campo elétricoambiente em volta de um elétron provoca um pósitron criado a ser atraído pelo elétron original, enquanto o elétron criado experimenta uma repulsão. Isto causa o que é chamado de polarização do vácuo. Como efeito, o vácuo se comporta como um meio tendo uma constante dielétrica maior que uma unidade. Assim a carga efetiva de um elétron é na verdade menor do que o seu valor verdadeiro, e a carga diminui com o aumento da distância do elétron.[86][87]Esta polarização foi confirmada experimentalmente em 1997 utilizando o acelerador de partículas TRISTAN.[88] Partículas virtuais causam um efeito de blindagem comparável para a massa do elétron.[89]
A interação com partículas virtuais também explica o pequeno (na ordem de 0,1%) desvio do momento magnético intrínseco de um elétron para o do magneton de Bohr (a anomalia do momento magnético).[73][90] O nível de concordância extraordinário entre a diferença prevista e a determinada experimentalmente é vista como uma das grandes realizações da eletrodinâmica quântica.[91]
O paradoxo aparente (mencionado acima na subseção de propriedades) de uma partícula pontual tendo um momento angular intrínseco e momento magnético pode ser explicada pela formação de fótons virtuais no campo elétrico gerado pelo elétron. Estes fótons fazem o elétron mudar para um modo tremido (conhecido como zitterbewegung),[92] que resulta em um movimento circular com precessão. Este movimento produz o spin e o momento magnético do elétron.[9][93] Em átomos, esta criação de fótons virtuais explica o desvio de Lamb observado em linhas espectrais.[86]
Interação[editar | editar código-fonte]
Um elétron gera um campo elétrico que exerce uma força atrativa em uma partícula com carga positiva, tal como um próton, e uma força repulsiva em uma partícula negativa. A intensidade desta força é determinada pela lei do inverso do quadrado de Coulomb.[94]Quando o elétron está em movimento, gera um campo magnético.[82] :140 A lei de Ampére-Maxwell relaciona o campo elétrico a massa em movimento do elétron (a corrente elétrica) em relação a um observador. Esta propriedade de indução alimenta o campo magnético que move um motor elétrico.[95] O campo eletromagnético de uma partícula carregada arbitrariamente em movimento é expresso pelo potencial de Liénard–Wiechert, o qual é válido mesmo quando a partícula está próxima da relativística da luz.
Quando um elétron está se movendo através do campo magnético, está sujeito a força de Lorentz que atua perpendicularmente ao plano definido pelo campo magnético e a velocidade do elétron. Esta força centrípeta faz o elétron seguir uma trajetória helicoidal através do campo com um raio chamado de raio de Larmor. A aceleração deste movimento em curva induz um elétron a irradiar energia na forma de radiação síncrotron.[82] :160[96][notas 7] A emissão de energia por sua vez provoca um recuo do elétron, conhecido como força Abraham–Lorentz, que cria uma fricção que retarda o elétron. Esta força é provocada pela “reação de volta” do próprio campo do elétron sobre si mesmo.[97]
Os fótons mediam interações eletromagnéticas entre partículas na eletrodinâmica quântica. Um elétron isolado em uma velocidade constante não pode emitir ou absorver nenhum fóton real; ao fazê-lo iria violar a lei da conservação da energia e o momento linear. Por outro lado, fótons virtuais podem transferir momento entre duas partículas carregadas. Esta troca de fótons virtuais, por exemplo, gera a força Coulomb.[98] A emissão de energia pode ocorrer quando um elétron em movimento é defletido por uma partícula carregada, tal como um próton. A aceleração do elétron resulta na emissão da radiação Bremsstrahlung.[99]
Uma colisão inelástica entre um fóton (luz) e um elétron solitário (livre) é chamada de efeito Compton. Esta colisão resulta na transferência de momento e energia entre as partículas, o que modifica o comprimento de onda do fóton em um valor chamado de desvio de Compton.[notas 8] A magnitude máxima do desvio do comprimento de onda é h/mec, que é conhecido como comprimento de onda Compton.[100] Para um elétron, tem uma valor de 2.43×10−12 m.[69] Quando o comprimento de onda da luz é longo (por exemplo, o comprimento de onda da luz visível é 0.4–0.7 μm) o desvio do comprimento de onda se torna desprezível. Tal interação entre a luz e elétrons livres é chamada de efeito Thomson ou efeito Thomson linear.[101]
A força relativa da interação eletromagnética entre duas partículas carregadas, tais como um elétron e um próton, é dada pela constante de estrutura fina. Este valor é uma quantidade adimensional formada pela razão das duas energias: a energia eletrostática de atração (ou repulsão) em uma separação de um comprimento de onda de Compton, e o resto de energia da carga. É dada por α ≈ 7.297353×10−3, que é aproximadamente igual a 1137.[69]
Quando elétrons e pósitrons colidem, eles se aniquilam, dando origem a dois ou mais fótons de raios gama. Se o elétron e o positron tem um momento desprezível, um positrônio pode se formar antes do evento de aniquilação em dois ou três fótons de raios gama totalizando 1.022 MeV.[102][103] Por outro lado, fótons de energia elevada podem se transformar em um elétron e um pósitron num processo chamado de produção de par, mas somente na presença de um partícula carregada próxima, tal como um núcleo.[104][105]
Na teoria da interação eletrofraca, o componente canhoto da função de onda do elétron forma um isospin fraco pareado com um elétron neutrino. Isto significa que durante a interação fraca, elétrons neutrinos se comportam como elétrons. Ambos os membros deste par suportam uma interação de corrente carregada pela emissão ou absorção de um W e pode ser convertida em um outro membro. A carga é conservada durante a reação porque o bóson W também carrega uma carga, cancelando qualquer mudança líquida durante a transmutação. Interações de correntes carregadas são responsáveis pelo fenômeno de decaimento beta em um átomo radioativo. O elétron e o elétron neutrino podem suportar uma interação de corrente neutra pela troca de um Z0, e isto é responsável pela dispersão elástica do elétron neutrino.[106]
Átomos e moléculas[editar | editar código-fonte]
Ver também: Átomo
Um elétron pode se ligar ao núcleo de um átomo pela atração da força de Coulomb. Um sistema com um ou mais elétrons conectado a um núcleo é denominado átomo. Se o número de elétrons for diferente da carga elétrica do núcleo, tal átomo é denominado íon. O comportamento similar a onda de uma ligação eletrônica é descrita por uma função denominada orbital atômico. Cada orbital tem seu próprio conjunto de números quânticos tais como energia, momento angular e projeção do momento angular, e somente um conjunto distinto desses orbitais existe em volta do núcleo. De acordo com o princípio da exclusão de Pauli, cada orbital deve ser ocupado por até dois elétrons, que devem diferir em seu número quântico de spin.
Os elétrons podem se transferir entre orbitais diferentes por meio da emissão ou absorção de um fóton cuja energia é igual à diferença das energias inicial e final.[107]Outros métodos de transferência de orbital incluem colisões com partículas, tais como o que ocorre no efeito Auger.[108] Para escapar de um átomo, a energia do elétron deve ser superior à energia de ionização daquele átomo. Isto ocorre, por exemplo, com o efeito fotoelétrico, quando a energia de um fóton que colide com um átomo é maior do que a energia de ionização daquele átomo.[109]
O momento angular do orbital é quantizado. Por possuir carga, o elétron produz um momento magnético orbital que é proporcional ao seu momento angular. O momento magnético líquido de um átomo é igual à soma vetorial do momento angular orbital e dos momentos magnéticos de spin de todos os elétrons e do núcleo. O momento magnético do núcleo é desprezível comparado com o dos elétrons, que ao ocupar o mesmo orbital (denominados, elétrons emparelhados) se cancelam.[necessário esclarecer][110]
As ligações químicas entre átomos ocorrem como resultado da interação eletromagnética, conforme descrita pelas leis da mecânica quântica.[111] A ligação mais forte é formada pelo compartilhamento ou transferência de elétrons entre átomos, permitindo a formação de moléculas.[12] Dentro da molécula, os elétrons de movem sob a influência de vários núcleos atômicos, ocupando um orbital molecular; tanto como podem ocupar orbitais atômicos de átomos isolados.[112] Um fator fundamental nestas estruturas moleculares é a existência de pares de elétrons. Estes são elétrons com spins opostos, permitindo a estes ocupar o mesmo orbital molecular sem violar o princípio da exclusão de Pauli (tal como no átomo). Orbitais moleculares diferentes tem distribuição espacial diferentes da densidade dos elétrons. Por exemplo, em pares ligados (i.e. em que os pares estão conectados os átomos) os elétrons podem ser encontrados com a probabilidade máxima em um volume relativamente pequeno entre os núcleos. Por outro lado, em pares de elétrons não ligados estes estão distribuídos ao largo de um grande volume ao redor do núcleo.[113]
Condutividade[editar | editar código-fonte]
Se um corpo tem mais ou menos elétrons do que o necessário para balancear a carga positiva de seu núcleo, então o objeto tem uma carga elétrica líquida. Quando existe um excesso de elétrons, é dito que está carregado negativamente. Quando existem menos elétrons do que o número de prótons no núcleo, é dito que está carregado positivamente. Quando o número de elétrons e prótons é igual, suas cargas se cancelam e o objeto está neutro eletricamente. Um corpo macroscópico pode desenvolver uma carga elétrica pela fricção e pelo efeito triboelétrico.[117]
Elétrons independentes se movendo no vácuo são denominados livres. Em metais, também se comportam como se fossem livres. Na realidade as partículas que são comumente chamadas de elétrons nos metais e outros sólidos são quase-elétrons-quasipartículas, que têm a mesma carga elétrica, spin e momento magnético de um elétron real mas podem possuir uma massa diferente.[118]
Quando elétrons livres -tanto no vácuo quanto em metais- se movem, produzem uma rede de fluxo de carga denominada corrente elétrica, que gera um campo magnético. Do mesmo modo uma corrente pode ser criada por uma mudança no campo magnético. Estas interações são descritas matematicamente pela equação de Maxwell.[119] Em uma dada temperatura, cada material tem uma condutividade elétrica que determina o valor da corrente elétrica quando um potencial elétrico é aplicado. Exemplos de bons condutores incluem metais tais como o cobre e o ouro, enquanto que o vidro e o Teflon são péssimos condutores. Em qualquer material dielétrico, os elétrons permanecem conectados aos seus respectivos átomos e o material se comporta como um isolante elétrico. A maioria dos semicondutores tem um nível variável de condutividade que reside entre os extremos de condução e isolamento elétrico.[120] Por outro lado, metais têm uma estrutura eletrônica de banda contendo bandas eletrônicas parcialmente preenchidas. A presença de tais bandas permite que os elétrons em metais se comportem como se fossem livres ou deslocalizados. Estes elétrons não estão associados a um átomo específico, então quando um campo elétrico é aplicado, eles ficam livres para se mover como um gás (denominado gás de Fermi)[121] através do material como se fossem elétrons livres.
Por causa da colisão entre átomos e elétrons, a velocidade de deriva dos elétrons em um condutor é da ordem de milímetros por segundo. Todavia, a velocidade em que a mudança de corrente em um ponto do material causa mudanças de corrente em outras partes do material, a velocidade de propagação, é aproximadamente 75% da velocidade da luz.[122] Isto ocorre porque sinais elétricos se propagam como uma onda, com a velocidade dependente da constante dielétrica do material.[123] Metais são relativamente bons condutores de calor, basicamente por conta dos elétrons deslocalizados que são livres para transportar energia térmica entre átomos. Porém, ao contrário da condutividade elétrica, a condutividade térmica é quase independente da temperatura. Isto é expresso matematicamente pela lei de Wiedemann–Franz,[121] que expressa que a relação da condutividade térmica para a elétrica é proporcional a temperatura. A desordem térmica na treliça metálica aumenta a resistividade elétrica do material, produzindo uma dependência da temperatura para a corrente elétrica.[124] Quando resfriados a um ponto denominado temperatura crítica, materiais podem ser submetidos a uma transição de fase em que perdem toda a resistividade a corrente elétrica, em um processo conhecido como supercondutividade. Na teoria BCS, este comportamento é modelado por pares de elétrons entrando num estado quântico chamado de condensado de Bose-Einstein. Este par de Cooper tem seus movimentos acoplados a matéria próxima via vibrações na rede chamadas de fônons, e por meio disso evitam as colisões com átomos que normalmente criam a resistência elétrica.[125] (Pares de Cooper tem um raio de aproximadamente 100 nm, portanto podem se sobrepor uns aos outros.)[126] Entretanto, o mecanismo pelo qual supercondutores de temperatura superior operam ainda permanece incerto.
Elétrons no interior de sólidos condutores, nos quais são quasipartículas, quando confinados firmemente em temperaturas próximas ao zero absoluto, se comportam como se tivessem divididos em três outras quasipartículas: spínons, órbitons e hólons.[127][128] O primeiro carrega o spin e momento magnético, o segundo a localização orbital e o último a carga.
Movimento e energia[editar | editar código-fonte]
De acordo com a teoria da relatividade especial de Einstein, a medida que um elétron se aproxima da velocidade da luz, do ponto de vista de um observador sua massa relativística aumenta, e por causa disso torna-se mais difícil acelerar a partir de dentro do plano do observador de referência. A velocidade do elétron pode se aproximar, mas nunca alcançar, a velocidade da luz no vácuo, c. Entretanto, quando elétrons relativísticos- isto é, elétrons se movendo a uma velocidade próxima de c-são injetados em um meio dielétrico tal como a água, onde a velocidade local da luz é significantemente menor que c, os elétrons temporariamente se movem mais rápido do que a luz no meio. A medida que interagem com o meio, eles geral uma luz fraca denominada radiação Cherenkov.[129]
Os efeitos da relatividade especial são baseados em uma quantidade conhecida como fator de Lorentz definido como
onde ‘’v’’ é a velocidade da partícula. A energia cinética Kede um elétron se movendo com velocidade v é:
onde me é a massa do elétron. Por exemplo, o Centro Acelerador Linear de Stanford pode acelerar um elétron a aproximadamente 51 GeV.[130] Uma vez que um elétron se comporta como um onda, em uma dada velocidade tem a característica do comprimento de onda de Broglie. Isto é dado por λe = h/p onde h é a constante de Planck e p é o momento.[52] Para o elétron de 51 GeV acima, o comprimento de onda é aproximadamente 2.4×10−17 m, que é pequeno o suficiente para explorar estruturas inferiores ao tamanho do núcleo atômico.[131]
Formação[editar | editar código-fonte]
Produção de par provocada pela colisão de um fóton com um núcleo atômico
A teoria do Big Bang é amplamente aceita para explicar os estágios iniciais da evolução do Universo.[132] Durante o primeiro milissegundo do Big Bang, a temperatura era superior a 10 bilhões Kelvin e os fótons tinham energia media superior a milhares de elétron-volts. Estes fótons tinham energia suficiente para reagir um com outro para formar pares de elétrons e pósitrons. Da mesma forma, os pares de elétron-pósitron se aniquilavam e emitiam fótons energéticos:
- γ + γ ↔ e+ + e−
Um equilíbrio entre elétrons, pósitrons e fótons foi mantido durante esta fase da evolução do Universo. Porém, após 15 segundos terem se passado, a temperatura do universo caiu a um limiar inferior onde a formação elétron-pósitron poderia ocorrer. A maior parte dos elétrons e pósitrons sobreviventes se aniquilou, liberando radiação gama que reaqueceu o universo.[133]
Por razões que permanecem incertas, durante o processo de leptogênese havia um excesso no número de elétrons em relação aos pósitrons.[134] Assim, aproximadamente um elétron a cada bilhão sobreviveu ao processo de aniquilação. Este excesso foi compatível com o excesso de prótons em relação aos antiprótons, em uma condição conhecida como assimetria bárion, que resultou em uma carga líquida de zero para o universo.[135][136] Os prótons e nêutrons remanescentes começaram a participar de reações em um processo conhecido como nucleossíntese, formando isótopos do hidrogênio e hélio, com traços do elemento lítio. Este processo atingiu um máximo após aproximadamente cinco minutos.[137] Os nêutrons remanescentes da nucleossíntese passaram por um decaimento beta negativo com uma meia-vida de aproximadamente mil segundos, liberando um próton e um elétron no processo,
- n → p + e− + ν
e
Pelos próximos 300000–400000 anos, o excesso de elétrons permaneceu com muita energia para se conectar ao núcleo atômico.[138] O que se seguiu foi um período conhecido como recombinação, quando os átomos neutros foram formados e o universo em expansão se tornou transparente para a radiação.[139]
Aproximadamente um milhão de anos após o big bang, a primeira geração de estrelas começou a se formar.[139] No interior da estrela, a nucleossíntese estelar resultou na produção de pósitrons da fusão do núcleo atômico. Estas partículas de antimatéria imediatamente aniquilaram os elétrons, liberando raios gama. O resultado foi uma redução estável no número de elétrons, e um aumento compatível no número de nêutrons. Todavia, o processo de evolução estelar pode resultar na síntese de isótopos radioativos. Alguns isótopos podem subsequentemente passar por um decaimento beta negativo, emitindo um elétron e um antineutrino do núcleo.[140] Um exemplo é o isótopo Cobalto-60 (60Co) que decai para formar o Níquel-60.[141]
No final de sua vida, uma estrela com mais de 20 massas solares pode passar por um colapso gravitacional para formar um buraco negro.[142] De acordo com a física clássica, estes objetos estelares massivos exercem uma atração gravitacional tão forte que previnem qualquer coisa, até mesmo a radiação eletromagnética, de escapar do raio de Schwarzschild. Porém, acredita-se que os efeitos da mecânica quântica potencialmente permitem a emissão da radiação de Hawking a esta distância. Presume-se que elétrons e pósitrons são criados no horizonte de eventosdestas estrelas restantes.
Quando pares de partículas virtuais (tal como um elétron e um pósitron) são criados nas proximidades do horizonte de eventos, a distribuição especial aleatória destas partículas pode permitir a um deles aparecer no exterior; este processo é denominado tunelamento quântico. O potencial gravitacional do buraco negro pode fornecer a energia necessária para transformar esta partícula virtual em uma real, permitindo ser irradiada para o espaço.[143] Em compensação, o outro membro do par é dado uma energia negativa, que resulta em uma perda líquida de energia-massa pelo buraco negro. A taxa de aumento da radiação de Hawking aumenta com o decréscimo da massa, eventualmente causando a evaporação do buraco negro até, finalmente, explodir.[144]
Raios cósmicos são partículas viajando através do espaço com energias elevadas, com registros de valor tão altos quanto 3.0×1020 eV.[145] Quando estas partículas colidem com núcleos atômicos na atmosfera terrestre, uma chuva de partículas é gerada, incluindo píons. [146] Mais da metade da radiação cósmica observada na superfície da terra consiste de múons. Esta partícula é um lépton produzido na atomosfera superior pelo decaimento de um píon.
- π− → μ− + ν
μ
Um múon, por sua vez, pode decair para formar um elétron ou um pósitron.[147]
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
teoria da transicionalidade Graceli no seu sistema decadimensional e categorial
domingo, 30 de dezembro de 2018
TEORIA DA TRANSICIONALIDADE GRACELI. NO SEU SISTEMA DECADIMENSIONAL E CATEGORIAL.
TG = TRANSICIONALIDADE GRACELI.
TG = TRANSICIONALIDADE GRACELI.
[E,E,F, D, C] = ESTRUTURAS, ENERGIAS, FENÔMENOS, DIMENSÕES, CATEGORIAS.
T G = [E,E,F, D, C,]
X
DECADIMENSIONAL
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
indeterminate trans-intermechanism of specificity in a decadimensional and categorical Graceli system.
each isotope has its phase transition specificity according to its peculiarities and potentiality and according to each energy and specific phenomena for each isotope and phase in which it is.
with their own variations on decay, conductivity, transformations, ion and charge interactions, electrostatic potential, quantum flux and momentum, jumps, diffractions, and others.
that is, a trans-intermechanic is formed for a system of specificity and relative to a decadimensional and categorial Graceli system, leading to transcendentality in strings and infinite, and indeterminate.
Graceli's transitionality theory in the Graceli decadimensional and categorical system.
where according to the five category dimensions and the ten physical dimensions and according to the categories there are random variations and flows according to the specificities in the transitions, such as transitions of quantum states, states of energies, physical states, states of phenomena and their interrelationships, and others.
as it has effects and variations for waves, particles, thermal, electrical, and other variations, if there is a possibility of other physicals for specificities [where there are variations of transitions according to types and levels of energies, structures, phenomena, and dimensions, and transitionalities.
the categories dimensions can be divided into five diversified forms.
types, levels, potentials, time of action, specificities of energy transitions, of phenomena, of states of energies, physical [structural], phenomena, quantum states, and others.
each isotope has its phase transition specificity according to its peculiarities and potentiality and according to each energy and specific phenomena for each isotope and phase in which it is.
with their own variations on decay, conductivity, transformations, ion and charge interactions, electrostatic potential, quantum flux and momentum, jumps, diffractions, and others.
that is, a trans-intermechanic is formed for a system of specificity and relative to a decadimensional and categorial Graceli system, leading to transcendentality in strings and infinite, and indeterminate.
Graceli's transitionality theory in the Graceli decadimensional and categorical system.
where according to the five category dimensions and the ten physical dimensions and according to the categories there are random variations and flows according to the specificities in the transitions, such as transitions of quantum states, states of energies, physical states, states of phenomena and their interrelationships, and others.
as it has effects and variations for waves, particles, thermal, electrical, and other variations, if there is a possibility of other physicals for specificities [where there are variations of transitions according to types and levels of energies, structures, phenomena, and dimensions, and transitionalities.
the categories dimensions can be divided into five diversified forms.
types, levels, potentials, time of action, specificities of energy transitions, of phenomena, of states of energies, physical [structural], phenomena, quantum states, and others.
trans-intermecânica indeterminada de especificidade num sistema decadimensional e categorial Graceli.
cada isótopo tem a sua especificidade de transição de fases conforme as suas peculiaridades e potencialidade e conforme cada energia e fenõmenos específicos para cada isótopo e fase em que se encontra.
com variações próprias sobre decaimentos, condutividade, transformações, interações de íons e cargas, potencial eletrostático, fluxos e momentum quântico, saltos, difrações, e outros.
ou seja, se forma uma trans-intermecânica para um sistema de especificidade e relativo a um sistema decadimensional e categorial Graceli, levando a uma transcendentalidade em cadeias e infinita, e indeterminada.
cada isótopo tem a sua especificidade de transição de fases conforme as suas peculiaridades e potencialidade e conforme cada energia e fenõmenos específicos para cada isótopo e fase em que se encontra.
com variações próprias sobre decaimentos, condutividade, transformações, interações de íons e cargas, potencial eletrostático, fluxos e momentum quântico, saltos, difrações, e outros.
ou seja, se forma uma trans-intermecânica para um sistema de especificidade e relativo a um sistema decadimensional e categorial Graceli, levando a uma transcendentalidade em cadeias e infinita, e indeterminada.
teoria da transicionalidade de Graceli no sistema decadimensional e categorial Graceli.
onde conforme as cinco dimensões categoriais e as dez dimensões físicas e conforme as categorias se tem variações e fluxos aleatórios conforme as especificidades nas transições, como transições de estados quântico, estados de energias, de estados físicos, estados de fenômenos e suas inter-relações, e outros.
como se tem efeitos e variações para ondas, partículas, variações térmica, elétrica, e outros , se tem uma possibilidade de haver outras físicas para especificidades [onde se tem variações de transições conforme tipos, e níveis de energias, de estruturas, de fenõmenos, e de dimensões, e transicionalidades.
onde conforme as cinco dimensões categoriais e as dez dimensões físicas e conforme as categorias se tem variações e fluxos aleatórios conforme as especificidades nas transições, como transições de estados quântico, estados de energias, de estados físicos, estados de fenômenos e suas inter-relações, e outros.
como se tem efeitos e variações para ondas, partículas, variações térmica, elétrica, e outros , se tem uma possibilidade de haver outras físicas para especificidades [onde se tem variações de transições conforme tipos, e níveis de energias, de estruturas, de fenõmenos, e de dimensões, e transicionalidades.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
indeterminate trans-intermechanism of specificity in a decadimensional and categorical Graceli system.
each isotope has its phase transition specificity according to its peculiarities and potentiality and according to each energy and specific phenomena for each isotope and phase in which it is.
with their own variations on decay, conductivity, transformations, ion and charge interactions, electrostatic potential, quantum flux and momentum, jumps, diffractions, and others.
that is, a trans-intermechanic is formed for a system of specificity and relative to a decadimensional and categorial Graceli system, leading to transcendentality in strings and infinite, and indeterminate.
Graceli's transitionality theory in the Graceli decadimensional and categorical system.
where according to the five category dimensions and the ten physical dimensions and according to the categories there are random variations and flows according to the specificities in the transitions, such as transitions of quantum states, states of energies, physical states, states of phenomena and their interrelationships, and others.
as it has effects and variations for waves, particles, thermal, electrical, and other variations, if there is a possibility of other physicals for specificities [where there are variations of transitions according to types and levels of energies, structures, phenomena, and dimensions, and transitionalities.
the categories dimensions can be divided into five diversified forms.
types, levels, potentials, time of action, specificities of energy transitions, of phenomena, of states of energies, physical [structural], phenomena, quantum states, and others.
each isotope has its phase transition specificity according to its peculiarities and potentiality and according to each energy and specific phenomena for each isotope and phase in which it is.
with their own variations on decay, conductivity, transformations, ion and charge interactions, electrostatic potential, quantum flux and momentum, jumps, diffractions, and others.
that is, a trans-intermechanic is formed for a system of specificity and relative to a decadimensional and categorial Graceli system, leading to transcendentality in strings and infinite, and indeterminate.
Graceli's transitionality theory in the Graceli decadimensional and categorical system.
where according to the five category dimensions and the ten physical dimensions and according to the categories there are random variations and flows according to the specificities in the transitions, such as transitions of quantum states, states of energies, physical states, states of phenomena and their interrelationships, and others.
as it has effects and variations for waves, particles, thermal, electrical, and other variations, if there is a possibility of other physicals for specificities [where there are variations of transitions according to types and levels of energies, structures, phenomena, and dimensions, and transitionalities.
the categories dimensions can be divided into five diversified forms.
types, levels, potentials, time of action, specificities of energy transitions, of phenomena, of states of energies, physical [structural], phenomena, quantum states, and others.
trans-intermecânica indeterminada de especificidade num sistema decadimensional e categorial Graceli.
cada isótopo tem a sua especificidade de transição de fases conforme as suas peculiaridades e potencialidade e conforme cada energia e fenõmenos específicos para cada isótopo e fase em que se encontra.
com variações próprias sobre decaimentos, condutividade, transformações, interações de íons e cargas, potencial eletrostático, fluxos e momentum quântico, saltos, difrações, e outros.
ou seja, se forma uma trans-intermecânica para um sistema de especificidade e relativo a um sistema decadimensional e categorial Graceli, levando a uma transcendentalidade em cadeias e infinita, e indeterminada.
cada isótopo tem a sua especificidade de transição de fases conforme as suas peculiaridades e potencialidade e conforme cada energia e fenõmenos específicos para cada isótopo e fase em que se encontra.
com variações próprias sobre decaimentos, condutividade, transformações, interações de íons e cargas, potencial eletrostático, fluxos e momentum quântico, saltos, difrações, e outros.
ou seja, se forma uma trans-intermecânica para um sistema de especificidade e relativo a um sistema decadimensional e categorial Graceli, levando a uma transcendentalidade em cadeias e infinita, e indeterminada.
teoria da transicionalidade de Graceli no sistema decadimensional e categorial Graceli.
onde conforme as cinco dimensões categoriais e as dez dimensões físicas e conforme as categorias se tem variações e fluxos aleatórios conforme as especificidades nas transições, como transições de estados quântico, estados de energias, de estados físicos, estados de fenômenos e suas inter-relações, e outros.
como se tem efeitos e variações para ondas, partículas, variações térmica, elétrica, e outros , se tem uma possibilidade de haver outras físicas para especificidades [onde se tem variações de transições conforme tipos, e níveis de energias, de estruturas, de fenõmenos, e de dimensões, e transicionalidades.
onde conforme as cinco dimensões categoriais e as dez dimensões físicas e conforme as categorias se tem variações e fluxos aleatórios conforme as especificidades nas transições, como transições de estados quântico, estados de energias, de estados físicos, estados de fenômenos e suas inter-relações, e outros.
como se tem efeitos e variações para ondas, partículas, variações térmica, elétrica, e outros , se tem uma possibilidade de haver outras físicas para especificidades [onde se tem variações de transições conforme tipos, e níveis de energias, de estruturas, de fenõmenos, e de dimensões, e transicionalidades.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
dispersão de Rutherford + entropia no sistema decadimensional e categorial Graceli
segunda-feira, 14 de janeiro de 2019
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Em física, a dispersão de Rutherford é um fenômeno que foi explicado por Ernest Rutherford em 1909,[1] e levou ao desenvolvimento da teoria orbital do átomo. É agora explorado pela técnica de análise de materiais espectrometria de dispersão de Rutherford. A dispersão de Rutherford é também referida às vezes como dispersão de Coulombporque baseia-se em forças eletrostáticas (Coulomb). Um processo similar provou o interior do núcleo nos anos 1960, chamado dispersão profunda inelástica.
Destaques da experiência de Rutherford
- Um feixe de partículas alfa é direcionado a uma folha de ouro fina.
- Muitas das partículas passaram através da película sem sofrer desvio.
- Outras foram desviadas por diversos ângulos.
- Algumas inverteram o sentido do movimento.
A partir destes resultados, Rutherford concluiu que a maioria da massa era concentrada numa região minúscula, positivamente carregada (o núcleo), rodeada por electrões. Quando uma partícula alfa (positiva) se aproximava o suficiente do núcleo, era fortemente repelida.[2] O pequeno tamanho do núcleo explicou a pequena quantidade de partículas alfa que foram repelidas em ângulos maiores. Rutherford demonstrou usando o método abaixo, que o tamanho do núcleo era inferior do que cerca de 
Teoria de Dispersão[editar | editar código-fonte]
Principais pressupostos:
• Colisão entre uma carga pontual, mais um núcleo pesado com carga Q=Ze é um projétil leve com carga q=ze é considerada como sendo elástica.
• Momento e energia são conservados.
• As partículas interagem através da força de Coulomb.
• A distância vertical onde o projétil se encontra a partir do centro do alvo, o parâmetro de impacto b , determinam o ângulo de dispersão θ.
A relação entre o ângulo de dispersão θ, a energia cinética inicial
e o parâmetro de impacto b é dado pela relação
onde z = 2, para partículas-α e Z = 79 de ouro.
Dedução da Transversal Diferencial[editar | editar código-fonte]
Na Figura , uma partícula que atinge o anel entre b e b + db é desviada num ângulo sólido dΩ entre θ e θ + dθ.
Por definição, a secção transversal é a constante de proporcionalidade
então
onde 
A seção transversal diferencial torna-se então
A partir da Equações 1.1 e 1.3 nós temos
A Eq.1.4, é chamada seção transversal diferencial para a dispersão de Rutherford.
Nos cálculos acima, considera-se apenas uma única partícula alfa. Num experimento de dispersão, é preciso considerar vários eventos de dispersão e medir-se a fracção de partículas desviadas num determinado ângulo.
Para um detector em um ângulo específico em relação ao feixe incidente, o número de partículas por unidade de superfície, colidindo o detector, é dado pela fórmula de Rutherford:
Onde
Ni = número de partículas alfa incidentes,
n = átomos por unidade de volume no alvo
L = espessura do alvo
Z = número atómico do alvo
e = carga electrónica
k = constante de Coulomb
r = distância entre o alvo e o detector,
KE = energia cinética das partículas alfa
θ = ângulo de dispersão.
A variação prevista, de partículas alfa detectadas, com ângulo é seguida de perto podados do contador de Geiger-Marsden, mostrados na Figura abaixo.
Cálculo do Tamanho Nuclear Máximo[editar | editar código-fonte]
Para colisões frontais cabeças entre partículas alfa e o núcleo, toda a energia cinética
da partícula alfa é transformada em energia potencial e a partícula está em repouso.
A distância entre o centro da partícula alfa e o centro do núcleo (b) neste momento é um valor máximo para o raio, se é evidente a partir da experiência que as partículas não atingiram o núcleo.
Aplicando a energia potencial de Coulomb entre as cargas nos electrões e no núcleo, pode-se escrever:
Reorganizando,
Para uma partícula alfa:
Substituindo estes valores na eqn.1.6, dá o valor do parâmetro de impacto de cerca de
.
O verdadeiro raio é cerca de
.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Invariantes de Ermakov-Lewis e Pacotes de Onda NO SDC GRACELI
quarta-feira, 2 de janeiro de 2019
x
decadim.
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
com
x
decadim.
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
onde
x
decadim.
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Invariantes de Ermakov-Lewis e Pacotes de Onda. A descoberta de invariantes exatos (constantes de movimento exatas ou integrais primeiras exatas) é de importância fundamental para um dado sistema físico (clássico ou quântico). Um número suficiente de invariantes exatos implica em um comportamento previsível da dinâmica do sistema físico em questão, sem ocorrência de caos. Os detalhes da determinação desses invariantes, bem como diversas aplicações dos mesmos, podem ser vistos, por exemplo, nos seguintes textos: Antônio Boulhosa Nassar, Ermakov and non-Ermakov Systems in Quantum Dissipative Models [Journal of Mathematical Physics 27, p. 755 (1986)]; Fernando Haas, Sistemas de Ermakov Generalizados, Simetrias e Invariantes Exatos [Tese de Doutoramento IFUFRS, (1998)]; Pedro Basílio Espinoza Padilla, Ermakov-Lewis Dynamic Invariants with Some Applications [MasterThesis, IF/Universidad de Guanajuato (2000)]; e Rachel M. Hawkins e James E. Lidsey, Ermakov-Pinney Equation in Scalar Field Cosmologies [Physical Review D66, p. 023523 (2002)]. Vejamos como encontrar os invariantes referidos acima. Em 1880 [Universita Izvestia Kiev 20 (9), p.1], o matemático ucraniano Vasilii Petrovich Ermakov (1845-1922) foi o primeiro a demonstrar que algumas equações diferenciais não lineares de segunda ordem são relacionadas, de maneira simples e definida, com equações diferenciais lineares de segunda ordem. Essa demonstração ficou conhecida como o Método de Ermakov (ME), assim enunciado (Haas, op. cit.): Dadas a equação (linear) Mais tarde, em 1930 (Physical Review 35, p. 863), W. E. Milne desenvolveu um método análogo ao ME para resolver a equação de Schrödinger unidimensional levando em conta a estrutura oscilatória básica da função de onda de Schrödinger [ onde O sistema Ermakov-Milne-Pinney foi reencontrado, em 1967 (Physical Review Letters 18, p. 510), por H. R. Lewis, Jr. ao estudar o movimento de um sistema caracterizado pela Hamiltoniana Essa técnica de determinação do IE-L foi usada pelos físicos brasileiros José Maria Filardo Bassalo (n.1935), Paulo de Tarso Santos Alencar (n.1940), Mauro Sérgio Dorsa Cattani (n.1942) e Antônio Boulhosa Nassar (n.1953), em 2003 [Tópicos da Mecânica Quântica de Broglie-Bohm(EDUFPA)], e por Daniel Gemaque da Silva (n.1977), em 2007 (TCC, DF/UFPA), usando a Mecânica Quântica de de Broglie-Bohm (MQBB), cujos principais conceitos são a velocidade quântica e o potencial quântico de Bohm (ver verbete nesta série), para os diversos sistemas físicos sujeitos ao potencial do OHDT, representados por equações de Schrödinger, lineares e não lineares. Nesses textos, verificamos que alguns desses sistemas apresentam IE-L, e outros não. Ainda no livro referido acima foi usada a técnica do IE-L para estudar a evolução do pacote de onda quântico associado a um sistema físico. Assim, para o caso da partícula livre (PL), essa técnica permite demonstrar que: com Para o caso de uma partícula sob o potencial do OHDT, a evolução temporal de onde |
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
